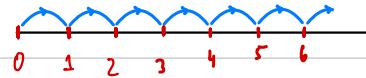


Math 451: Introduction to General Topology

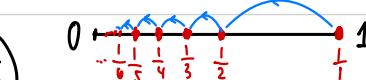
Lecture 2

Examples of equinumerosity.



(a) Hilbert hotel: $\mathbb{N} \cong \mathbb{N}^+ := \mathbb{N} \setminus \{0\}$. Indeed, $\mathbb{N} \rightarrow \mathbb{N}^+$ by $n \mapsto n+1$ is a bijection.

(b) $[0,1] \cong [0,1]$. Similarly, $[0,1) \cong (0,1)$ hence $[0,1] \cong (0,1)$.



Proof 1. Carve a Hilbert hotel inside $[0,1]$ by taking any sequence $(x_n) \subseteq [0,1]$ of pairwise distinct elements, e.g. $x_n = \frac{1}{n}$, so $x_1 = 1$. Then map each x_n to x_{n+1} and map every $x \notin \{x_n : n \in \mathbb{N}^+\}$ to itself. This is a bijection $[0,1] \rightarrow [0,1]$. □

Proof 2. Clearly $[0,1] \subset [0,1]$ and also $[0,1] \subset [0,1]$ by the scaling map with $\frac{1}{2}$. Thus by Cantor-Schröder-Bernstein, $[0,1] \cong [0,1]$. □

(c) $(a,b) \cong (c,d)$, for all $a < b$ and $c < d$ in \mathbb{R} .

Proof. $f: (a,b) \rightarrow (c,d)$ linear, by $x \mapsto \frac{d-c}{b-a}(x-a) + c$. This is clearly a bijection, its inverse is defined similarly.

(d) $\mathbb{R} \cong (a,b)$.

Proof. It is enough to prove $\mathbb{R} \cong (-1,1)$. Let $f: (-1,1) \rightarrow \mathbb{R}$ $x \mapsto \frac{x}{1-|x|}$.

One easily verifies that this is a bijection, for example by constructing a inverse. □

(e) $P(X) \cong 2^X$ for any set X . In general, for sets A and B , we denote by B^A the set of all functions from A to B . For example, \mathbb{R}^3 is the set of triples of reals, and each triple (x_0, x_1, x_2) is a function from $3 := \{0,1,2\}$ to \mathbb{R} .

given by $i \mapsto x_i$. Similarly, a sequence (x_n) of reals is just a function $\mathbb{N} \rightarrow \mathbb{R}$ given by $n \mapsto x_n$. We denote the set of sequences by $\mathbb{R}^{\mathbb{N}}$. Thus 2^X is the set of all 0-1 valued functions on X , i.e. other words indicator functions of sets.

Proof. Define $f: \mathcal{P}(X) \rightarrow 2^X$ by mapping each $A \subseteq X$ to its indicator function:

$\mathbf{1}_A: X \rightarrow \{0, 1\} = \mathbb{Z}_2$ given by $\mathbf{1}_A(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{o.w.} \end{cases}$ Thus, we map $A \mapsto \mathbf{1}_A$.

This map f has an inverse $g: 2^X \rightarrow \mathcal{P}(X)$ given by $h \mapsto \{x \in X : h(x) = 1\}$. Thus f is a bijection. \square

In particular, $\mathcal{P}(\mathbb{N}) = 2^{\mathbb{N}}$, where $2^{\mathbb{N}}$ is the set of all binary (i.e. 0-1 valued) sequences over \mathbb{N} .

We already proved the following:

Prop. For any sets A, B , we have: $A \subset B \stackrel{\text{AC}}{\Leftrightarrow} B \rightarrow A$.

Finite/infinite sets.

The set of natural numbers \mathbb{N} is given by the set theory and it contains 0 which is just \emptyset . Each natural number $n \in \mathbb{N}$ is equal to $\{0, 1, \dots, n-1\}$, so $n < m \Leftrightarrow n \in m$.

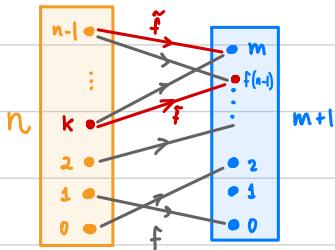
Def. A set X is called finite if it is equinumerous with a natural number, i.e. there is $n \in \mathbb{N}$ such that $X \equiv n = \{0, 1, \dots, n-1\}$. It is called infinite otherwise.

Def. A set X is called Dedekind infinite if it is equinumerous with its proper subset, i.e. there is a proper subset $X' \subsetneq X$ such that $X \equiv X'$ (e.g. $\mathbb{N} \equiv \mathbb{N}^+$).

Otherwise, call X Dedekind finite.

Proof (Pigeonhole Principle). Finite sets are Dedekind finite. In fact, for all $n, m \in \mathbb{N}$, if $n \leq m$ then $n \leq m$.

Proof. We prove by induction on m . For $m=0=\emptyset$, if $f: n \hookrightarrow \emptyset$ then $n=\emptyset=0$. Now suppose the statement is true for an arbitrary $m \in \mathbb{N}$ and prove for $m+1$. Recall that $m = \{0, 1, \dots, m-1\}$ and $m+1 = \{0, 1, \dots, m\}$. Suppose $f: n \hookrightarrow m+1$.



If $m \notin f(\{0, 1, \dots, n-1\})$, then in fact $f: n \hookrightarrow m$, so $n \leq m \leq m+1$ by induction. Thus, assume $\exists k \in \mathbb{N}$ s.t. $f(k) = m$. Then define $\tilde{f}: n \rightarrow m+1$ by $\tilde{f}(i) = f(i)$ if $i \notin \{k, n-1\}$, and $\tilde{f}(k) := f(n-1)$ and $\tilde{f}(n-1) := f(k) = m$. Then \tilde{f} is still injective, but it now maps $n-1$ to m , so the restriction of \tilde{f} to $n-1 := \{0, 1, \dots, n-2\}$ is an injection of $n-1$ into $m = \{0, 1, \dots, m-1\}$. Hence by induction, $n-1 \leq m$, so $n \leq m+1$. \square

Theorem (AC)². For every set X , TFAE:

- (1) X is infinite.
- (2) X is Dedekind infinite.
- (3) $\mathbb{N} \hookrightarrow X$.
- (4) $X \rightarrowtail \mathbb{N}$.

Proof. (2) \Rightarrow (1). This is the contrapositive of Pigeonhole Principle.

(3) $\overset{\text{(AC)}}{\Leftarrow}$ (4). We already did, \hookrightarrow uses (AC).

(3) \Rightarrow (2). We do the Hilbert hotel trick inside X . Indeed, because $\mathbb{N} \hookrightarrow X$, we assume WLOG that $\mathbb{N} \leq X$. Then define $f: X \rightarrow X \setminus \{0\}$ by

$$f(x) := \begin{cases} x & \text{if } x \notin \mathbb{N} \\ x+1 & \text{if } x \in \mathbb{N} \end{cases}$$

This clearly a bijection, just like with the proof of $[0, 1] \equiv [0, 1]$.

(1) $\overset{\text{(AC)}}{\Rightarrow}$ (3). We define a function $f: \mathbb{N} \rightarrow X$ by defining $f(n)$ by induction/recursion

on $n \in \mathbb{N}$. For an arbitrary $n \in \mathbb{N}$, we suppose that $f(0), \dots, f(n-1)$ are already defined and we define $f(n) := \text{any element of } X \setminus \{f(0), \dots, f(n-1)\}$.

In other words: $f(0) := \text{choose some element of } X$, $f(1) := \text{choose some element of } X \setminus \{f(0)\}$, $f(2) := \text{choose an element of } X \setminus \{f(0), f(1)\}$, etc. To make this a rigorous definition, we need to apply AC and get a choice function $c: P(X) \setminus \{\emptyset\} \rightarrow X$ such that for each $A \subseteq X$, $c(A) \in A$. Then we can define

$$f(n) := c(X \setminus \{f(0), f(1), \dots, f(n-1)\}).$$

This is an injection by definition. □

HW: Prove that $(2) \Rightarrow (3)$ directly without AC.

Countable sets. A set X is said to be **countable (ctbl)** if $X \equiv \mathbb{N}$ or X is finite.

Theorem (without AC). For a set X , TFAE:

(1) X is ctbl.

(2) $X \subseteq \mathbb{N}$.

(3) $\mathbb{N} \rightarrow X$. (This means \exists surjection $h: \mathbb{N} \rightarrow X$, so $X = h(\mathbb{N}) = \{h(n): n \in \mathbb{N}\}$. We call this h an **enumeration** of X and commonly write $X = \{x_n: n \in \mathbb{N}\}$ where $x_n = h(n)$.)

Proof. (1) \Rightarrow (2). This is trivial since either $X \equiv \mathbb{N} \hookrightarrow \mathbb{N}$ or $X \equiv n = \{0, 1, \dots, n-1\} \subseteq \mathbb{N}$.

(2) \Rightarrow (3). Already done.

(3) \Rightarrow (1). We know this using AC but we don't need AC when the domain is \mathbb{N} because we can use the **well-ordering** of \mathbb{N} to define a right inverse of a surjection $f: \mathbb{N} \rightarrow X$. Indeed, map each $x \in X$ to the least natural number in $f^{-1}(\{x\})$.

(2) \Rightarrow (1). WLOG, assume $X \subseteq \mathbb{N}$ and infinite (if X is finite then we are done). Define

a function $f: \mathbb{N} \rightarrow X$ by recursion, as follows: for an arbitrary $n \in \mathbb{N}$, suppose that $f(0), f(1), \dots, f(n-1)$ are defined and set $f(n) := \min X \setminus \{f(0), f(1), \dots, f(n-1)\}$, using the well-ordering of \mathbb{N} and the fact that $X \setminus \{f(0), \dots, f(n-1)\}$ is nonempty since X is infinite. □