
Math 451: Introduction to General Topology
Lecture 2

>

Examples of equinumerocity. n
(a) Hilbert hotel : IN =INT := IN 103 .

Indeed
,
IN-IN

+

by not n+ 1 is a bijection.

(8) [0, = [0 , 1). Similarly , 10
,1) = 10

.
1) heace 10

,1 = (0, 1).Dr +
Proof 1

. Carve a Hilbert hotel inside 10
, 1) by taking any sequence (x2) - 10 ,1 of pair -

wise distinct elements
,
e
. g. Xn

= E
,
so x, = 1

.
Then

map
each xn to

Xu+, and
map every x & (Xn

: neIN
+ ) to itself .

This is a bijection 10
,
1 -> C0

, 1.

Proof 2.
. Nearby 10

,
1c[0

, 1) and also 10
,
DCC0 , 1 by the scaling map with.

Thus by Canter-Schroder-Bernstein
,
10
, 17 = (0, 1) .

(2) (a , b) = (c , d) , for all ask and ad in IR.

Proof.
-

: (a
, 6) -> ( ,d) linea , by x1 &(a)

v .

This is clearly abijection,
its inverse is definedcimikily.ab

(d) IR = (a, b).
Propf

.

It is enoughbe prove R = (1
,
1)

.
Let f : (1

,
1) -> In

( 7 I S YI ,
- (x)IR 9 b

One easily verifies Meat this is a bijection
,
for example byenstructing a inverse.

(e) D(X) = 2
*

for any set X . In general , for sets A and B
,
we denote by BA

the set of all functions from A to B
.

For example , IR3 is the set of triples
of reals

,
and each triple (Xo

,
X
,
X2) is a function from 3 := 30

,
1
,
23 to It



given by itX2. Similarly , a requence
(v) of reaks is just a function

I - I give by UHXn .
We denote the set of sequences by IRIN

.

Thus 2 is the set of all 0-1 valued functions on X
,
in other words

indicator functions of sets.

Proof
.

Define fo R(X) -> 2 by mapping each AX to its indicator function :

#a : X-> 40, 13 =: 2 given by Thus
,
we

map A IAA.
1(x) := 41 itxA

This
map f has an inverse g.

*
-> P(X) given by hit /xeX : h(x = th

·

Thes is a bijection.

En particuli , PCIN = 2
,
where I is the set of all binary (i . e . O-1 valued

sequences over N .

We already proved the following :

Prop . For my
sete A

,
B
,
we have : A BAG B--A.

Finite/infinite sets
.

The set of natural numbers IN is given by the set Mary and it contains 0 which is

just 0 .

Each natural number neIN is equaldo 30 ,
1
, ..., n-13 , so namsnem.

Def
. A set X is called finite if it is equinumerous with a natural number

,
i
. e.

there is meI such that X = n = 30 , 1, . . ., -13 .
It is called infinite otherwise.

Def
.

A set X is called Dodkind infinite if it is equinumerous will its proper subset,
i

. e . there is a proper subset XIX such that X = X' (e
. g .
IN=Nt)·



& theorise
,
call X Dedekind finite

.

Prop (Pigeonhole Principle) . Finite sets are Dedkind finite
.

In fact
,
for all u

,
mEIN

,
if nasm

then n & M.

Proof
.

We
prove by induction on m

.

For m = P =$
,
it fina Run n =0 = 0.

Now suppose the statement is true for an arbitrary mEIN and prove for met.

Recall that m= 10
,
1, . . . , m-1] and MH = 10 , 1 ...,my · Suppose f : 14 m+ 1.

n-1 .
m

If me F130
,
1
, ...,
n-1) ,

then in fact fon cm
,
so nememet

>

i 7
· f(n-1)

N K 7 ·
m + 1 by indection. Thus

,
assume EREU s .t . flu) = m.

~

2
7

· 2 The define fon + m+ by (i) = #(i) if it]r , n-1l,1 · I
s

O
f

· 8 and F(R) : = F(u-l) and F(u-1) : = F(k) = m. Then E is still

injective ,

but it now maps n-1 to m
,
so the restriction of F to n+1:= 10, /, ..., n- 1)

is an injection of not into me 20 , 1 , ..., m -1) .
Heave by induction, not im,

2011 m + ).

Theorem IA?? For every
set X

,
TFAE :

(1) X is infinite

(2) X is Dedekind infinite.

(3) IN X
.

(4) Xe IN
.

Proof
.

(27-11)
.

This is the contrapositive of Pigeonhole Principle.
13 (4). We already did ,

< = uses (AC).

(3) => (2)
.

We do te Hilbert hotel trick inside X
.

Indeed, because INC X
,
we assure

WLOG that IN=X
.

Then define f : X + X 1303 by
f(x)= (_XA

This clearly a bijection , just like with the proof of 20
, 17 = Co,.

1113)
.

We define a function FiI-X by defining flul by induction/recursion



on WEIN .
For an arbitrary nea , we suppose that flo), ..., fluel) are already defined

and wedefine flu) : = any element of X14(10), ..., flu-p) ·
In other words : F(0) : = choose , one element of X

,
f(l) : = choose sore element of X18103)

,

↑ (2) : = choose an element of XI((0) , f(1) , etc. To make this a rigorous definition,
we needbe apply As and yet a choice function c : PN)\0-X such that
for each AEX

,
<LATEA

.
Then we can define

f(u) : = < (X (4 f(0), f(l), . . ., f(n-1)3) .
This is an injection by definition.

HW : Prove that (2)=> (3) directly without A2.

countable sets
.

A set X is said to be countable (ctbl) if X = I or X is finite.

Merew (without Al). For a set X
,
TFAE :

(1) X is utbl
.

(2) X I.

13) IN-3X . (This means E surjection h : /N-X , so X = h(I) = \h(m) : nEN3
.

We call this h an enumer

ration of X and commonly write X = &Xu : neIN) where xn = h(n)
.
)

Proof
. (1) => (2) . This is trivial since either XEINUI or X = n = 30, 1...,

n - 13 = /N.

(2) => (3)
. Already done

.

13) => (2) . We know his using Al but we don't need Al when the domain is IN because

we can use the well-ordering of IN to define a right inverse of a surjection f: /NeeX.
Indeed

, map each xeX to the least natural number in f" (3x)).

(2) => (1) . WLOG
,
assume XCIN and infinite (if X is finite then we are done)

. Define

5 :f
a function f : IN-X by recursion

,
as follows : for an arbitrary neIN, suppose that

4
.

T
&

f (0)
,
f(l), ..., float are defined and set flul := min X14fld , F(l), ..., fln-D3 , using

3 T
& Y

2.
7 .

the well-ordering of IN and the fact that X1(f(0), ..., f(n-1)] is nonempty
11 since X is infinite.
8 - 3

IN X


